2.5V / 3.3V 1:5 Differential ECL/PECL/HSTL Clock Driver

The MC100LVEP14 is a low skew 1–to–5 differential driver, designed with clock distribution in mind, accepting two clock sources into an input multiplexer. The ECL/PECL input signals can be either differential or single–ended (if the V_{BB} output is used). HSTL inputs can be used when the LVEP14 is operating under PECL conditions.

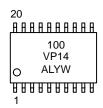
The LVEP14 specifically guarantees low output-to-output skew. Optimal design, layout, and processing minimize skew within a device and from device to device.

To ensure that the tight skew specification is realized, both sides of any differential output need to be terminated identically into 50 Ω even if only one output is being used. If an output pair is unused, both outputs may be left open (unterminated) without affecting skew.

The common enable (\overline{EN}) is synchronous, outputs are enabled/disabled in the LOW state. This avoids a runt clock pulse when the device is enabled/disabled as can happen with an asynchronous control. The internal flip flop is clocked on the falling edge of the input clock; therefore, all associated specification limits are referenced to the negative edge of the clock input.

The MC100LVEP14, as with most other ECL devices, can be operated from a positive V_{CC} supply in PECL mode. This allows the LVEP14 to be used for high performance clock distribution in +3.3 V or +2.5 V systems. Single ended CLK input pin operation is limited to a $V_{CC} \geq 3.0$ V in PECL mode, or $V_{EE} \leq -3.0$ V in NECL mode. Designers can take advantage of the LVEP14's performance to distribute low skew clocks across the backplane or the board.

- 100 ps Device-to-Device Skew
- 25 ps Within Device Skew
- 400 ps Typical Propagation Delay
- Maximum Frequency > 2 GHz Typical
- The 100 Series Contains Temperature Compensation
- PECL and HSTL Mode: V_{CC} = 2.375 V to 3.8 V with V_{EE} = 0 V
- NECL Mode: $V_{CC} = 0 \text{ V}$ with $V_{EE} = -2.375 \text{ V}$ to -3.8 V
- LVDS Input Compatible
- Open Input Default State


ON Semiconductor™

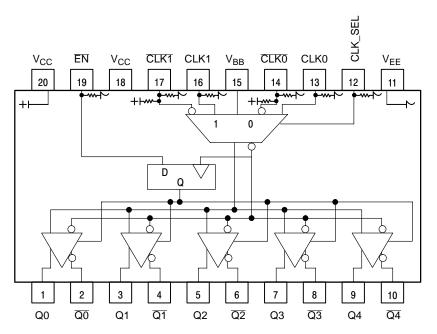
http://onsemi.com

MARKING DIAGRAM*

TSSOP-20 DT SUFFIX CASE 948E

A = Assembly Location

L = Wafer Lot


Y = Year

W = Work Week

ORDERING INFORMATION

Device	Package	Shipping
MC100LVEP14DT	TSSOP	75 Units/Rail
MC100LVEP14DTR2	TSSOP	2500 Tape & Reel

^{*}For additional information, see Application Note AND8002/D

Warning: All $\rm V_{CC}$ and $\rm V_{EE}$ pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. 20-Lead Pinout (Top View) and Logic Diagram

PIN DESCRIPTION

PINS	FUNCTION
CLK0*, CLK0**	ECL/PECL/HSTL CLK Input
CLK1*, CLK1**	ECL/PECL/HSTL CLK Input
Q0:4, Q0:4	ECL/PECL Outputs
CLK_SEL*	ECL/PECL Active Clock Select Input
EN*	ECL Sync Enable
V _{BB}	Reference Voltage Output
V _{CC}	Positive Supply
V _{EE}	Negative Supply

FUNCTION TABLE

CLK0	CLK1	CLK_SEL	EN	Q
L H X X	X X L H X	L H H X	L L L	L H L H L*

^{*} On next negative transition of CLK0 or CLK1

ATTRIBUTES

Characteri	stics	Value		
Internal Input Pulldown Resistor	75 kΩ			
Internal Input Pullup Resistor	37.5 kΩ			
ESD Protection	Human Body Model Machine Model Charged Device Model	> 2 kV > 100 V > 2 kV		
Moisture Sensitivity, Indefinite Time	Out of Drypack (Note 1)	Level 1		
Flammability Rating Oxygen Index				
Transistor Count	357 Devices			
Meets or exceeds JEDEC Spec EIA	/JESD78 IC Latchup Test			

^{1.} For additional information, see Application Note AND8003/D.

^{*} Pins will default LOW when left open.

^{**} Pins will default to $V_{CC}/2$ when left open.

MAXIMUM RATINGS (Note 2)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		6	V
V _{EE}	NECL Mode Power Supply	V _{CC} = 0 V		-6	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$ \begin{array}{c} V_{I} \! \leq \! V_{CC} \\ V_{I} \! \geq \! V_{EE} \end{array} $	6 -6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
TA	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 LFPM 500 LFPM	20 TSSOP 20 TSSOP	140 100	°C/W °C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	std bd	20 TSSOP	23 to 41	°C/W
T _{sol}	Wave Solder	<2 to 3 sec @ 248°C		265	°C

^{2.} Maximum Ratings are those values beyond which device damage may occur.

100LVEP DC CHARACTERISTICS, PECL $V_{CC} = 2.5 \text{ V}$, $V_{EE} = 0 \text{ V}$ (Note 3)

			-40°C		25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	45	60	75	45	60	75	45	60	75	mA
V _{OH}	Output HIGH Voltage (Note 4)	1355	1480	1605	1355	1480	1605	1355	1480	1605	mV
V _{OL}	Output LOW Voltage (Note 4)	555	680	805	555	680	805	555	680	805	mV
V _{IH}	Input HIGH Voltage (Single–Ended) (Note 5)	1335		1620	1335		1620	1275		1620	mV
V _{IL}	Input LOW Voltage (Single–Ended) (Note 5)	555		875	555		875	555		875	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 6)	1.2		2.5	1.2		2.5	1.2		2.5	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current CLK CLK	0.5 -150			0.5 -150			0.5 -150			μА

NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The NOTE: LYEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.

3. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.125 V to -1.3 V.

4. All loading with 50 ohms to V_{CC}-2.0 volts.

5. Do not use V_{BB} at VCC < 3.0 V.

6. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

100LVEP DC CHARACTERISTICS, PECL $V_{CC} = 3.3 \text{ V}$, $V_{EE} = 0 \text{ V}$ (Note 7)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	45	60	75	45	60	75	45	60	75	mA
V _{OH}	Output HIGH Voltage (Note 8)	2155	2280	2405	2155	2280	2405	2155	2280	2405	mV
V _{OL}	Output LOW Voltage (Note 8)	1355	1480	1605	1355	1480	1605	1355	1480	1605	mV
V _{IH}	Input HIGH Voltage (Single–Ended)	2135		2420	2135		2420	2135		2420	mV
V _{IL}	Input LOW Voltage (Single–Ended)	1355		1675	1355		1675	1355		1675	mV
V_{BB}	Output Reference Voltage (Note 9)	1775	1875	1975	1775	1875	1975	1775	1875	1975	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 10)	1.2		3.3	1.2		3.3	1.2		3.3	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current CLK CLK	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.

- 7. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.925 V to -0.5 V.
- 8. All loading with 50 ohms to V_{CC} -2.0 volts.
- 9. Single ended input operation is limited to $\rm V_{CC}\,{\ge}\,3.0~V$ in PECL mode.
- 10. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

100LVEP DC CHARACTERISTICS, NECL $V_{CC} = 0 \text{ V}$, $V_{EE} = -3.8 \text{ V}$ to -2.375 V (Note 11)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	45	60	75	45	60	75	45	60	95	mA
V _{OH}	Output HIGH Voltage (Note 12)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
V _{OL}	Output LOW Voltage (Note 12)	-1945	-1820	-1695	-1945	-1820	-1695	-1945	-1820	-1695	mV
V _{IH}	Input HIGH Voltage (Single–Ended)	-1165		-880	-1165		-880	-1165		-880	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1945		-1625	-1945		-1625	-1945		-1625	mV
V_{BB}	Output Reference Voltage (Note 13)	-1525	-1425	-1325	-1525	-1425	-1325	-1525	-1425	-1325	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 14)	V _{EE}	+1.2	0.0	V _{EE}	+1.2	0.0	V _{EE}	+1.2	0.0	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current CLK CLK	0.5 -150			0.5 -150			0.5 -150			μА

NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.

- 11. Input and output parameters vary 1:1 with V_{CC}.
- 12. All loading with 50 ohms to V_{CC} –2.0 volts. 13. Single ended input operation is limited to $V_{EE} \le 3.0$ V in NECL mode.
- 14. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

DC CHARACTERISTICS, HSTL $\rm V_{CC}$ = 2.375 V to 3.8 V, $\rm V_{EE}$ = 0 V

		-40°C			25°C		85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{IH}	Input HIGH Voltage	1200			1200			1200			mV
V _{IL}	Input LOW Voltage			400			400			400	mV

$\textbf{AC CHARACTERISTICS} \ \ V_{CC} = 0 \ \ V, \ \ V_{EE} = -2.375 \ \ V \ \ to \ -3.8 \ \ V \\ \text{or} \quad V_{CC} = 2.375 \ \ V \ \ to \ 3.8 \ \ V; \ \ V_{EE} = 0 \ \ V \ \ (\text{Note 15})$

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max} LVPECL /HSTL	Maximum Frequency (See Figure 2. F _{max} /JITTER)		> 2			> 2			> 2		GHz
t _{PLH} t _{PHL}	Propagation Delay to Output Differential	300	375	425	300	400	475	300	430	525	ps
t _{skew}	Within-Device Skew Device-to-Device Skew (Note 16)		10 100	25 125		15 150	25 175		15 200	25 225	ps
t _s t _h	Setup Time EN Hold Time EN	100 200	50 140		100 200	50 140		100 200	50 140		ps
t _{JITTER}	Cycle–to–Cycle Jitter (See Figure 2. F _{max} /JITTER)		0.2	< 1		0.2	< 1		0.2	< 1	ps
V _{PP}	Minimum Input Swing	150	800	1200	150	800	1200	150	800	1200	mV
t _r /t _f	Output Rise/Fall Time (20%–80%)	125	165	225	125	180	250	125	200	275	ps

^{15.} Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 ohms to V_{CC} -2.0 V. 16. Skew is measured between outputs under identical transitions.

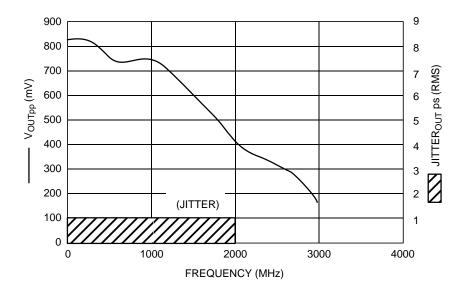


Figure 2. F_{max}/Jitter

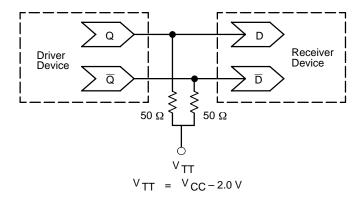


Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 – Termination of ECL Logic Devices.)

Resource Reference of Application Notes

AN1404 – ECLinPS Circuit Performance at Non–Standard V_{IH} Levels

AN1405 – ECL Clock Distribution Techniques

AN1406 – Designing with PECL (ECL at +5.0 V)

AN1504 – Metastability and the ECLinPS Family

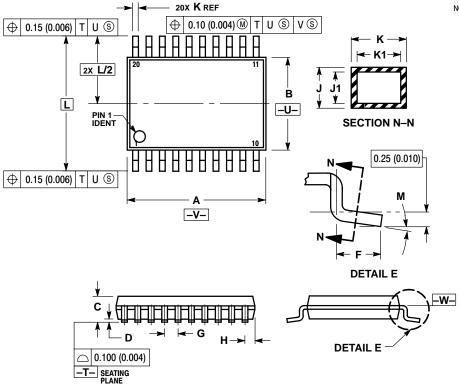
AN1568 – Interfacing Between LVDS and ECL

AN1650 – Using Wire-OR Ties in ECLinPS Designs

AN1672 – The ECL Translator Guide

AND8001 - Odd Number Counters Design

AND8002 - Marking and Date Codes


AND8009 - ECLinPS Plus Spice I/O Model Kit

AND8020 - Termination of ECL Logic Devices

For an updated list of Application Notes, please see our website at http://onsemi.com.

PACKAGE DIMENSIONS

TSSOP-20 **DT SUFFIX** PLASTIC TSSOP PACKAGE CASE 948E-02 ISSUE A

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
- 714.5M, 1982.
 2. ICONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH
- PROTRUSIONS OF GAILE BURRS. MOLD FLASH
 OR GATE BURRS SHALL NOT EXCEED 0.15
 (0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE INTERLEAD
 FLASH OR PROTRUSION. INTERLEAD FLASH OR
 PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
 PER SIDE.
- PER SIDE.
 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE —W—.

	MILLIN	IETERS	INC	HES		
DIM	MIN	MAX	MIN	MAX		
Α	6.40	6.60	0.252	0.260		
В	4.30	4.50	0.169	0.177		
С		1.20		0.047		
D	0.05	0.15	0.002	0.006		
F	0.50	0.75	0.020	0.030		
G	0.65	BSC	0.026 BSC			
Н	0.27	0.37	0.011	0.015		
J	0.09	0.20	0.004	0.008		
J1	0.09	0.16	0.004	0.006		
K	0.19	0.30	0.007	0.012		
K1	0.19	0.25	0.007	0.010		
L	6.40	BSC	0.252 BSC			
M	0°	8°	0°	8°		

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.